2022 FALL REAL ANALYSIS (I) @ NCTU APPL. MATH. HOMEWORK 3

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on October 21, 2022.
- (1) Let $a_k \in \mathbb{R}$ be constants and $E_k \subset \mathbb{R}^n$ be subsets, for k = 1, 2, ..., N. A simple function $f(x) = \sum_{j=1}^{N} a_k \chi_{E_k}(x)$ is measurable if and only if E_k are measurable sets for all k = 1, 2, ..., N.
- (2) (The Borel-Cantelli lemma) Suppose $\{E_k\}_{k=1}^{\infty}$ is a collection of countably many measurable subsets of \mathbb{R}^n , and

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Let

$$E = \{x \in \mathbb{R}^n : x \in E_k, \text{ for infinitely many } k\}$$
$$= \limsup_{k \to \infty} (E_k).$$

Prove that

- (a) E is measurable,
- (b) m(E) = 0.
- (3) If f is integrable in (0, 1), show that $x^k f(x)$ is also integrable in (0, 1), for all $k \in \mathbb{N}$. Moreover, $\int_0^1 x^k f(x) dx \to 0$ as $k \to \infty$.
- (4) Let f(x, y), $0 \le x, y \le 1$ satisfy the following conditions: For each x, f(x, y) is an integrable function of y, and $\frac{\partial f(x,y)}{\partial x}$ is a bounded function of (x, y). Show that $\frac{\partial f(x,y)}{\partial x}$ is a measurable function of y for each x and

$$\frac{d}{dx}\int_0^1 f(x,y)\,dy = \int_0^1 \frac{\partial}{\partial x} f(x,y)\,dy.$$

(5) Let E ⊂ ℝⁿ be any measurable subset, and f be a nonnegative measurable function defined on E. Let (f_m)(E) := ∫_E f(x) dx. Show that
(a) f_m is a (Lebesgue) measure.¹

¹For example, when f = 1, the integration stands for the usual Lebesgue measure.

- (b) If T is a measurable and one-to-one map from \mathbb{R}^n to \mathbb{R}^m with a measurable inverse T^{-1} . Show that $(f_m) \circ (T^{-1}(K)) = (f \circ T^{-1})(K)$, where $K \subset \mathbb{R}^m$ is any measurable subset of \mathbb{R}^m .²
- (6) Let $\{f_k\}$ be a sequence of measurable functions on E. Show that $\sum_{k=1}^{\infty} f_k$ converges

absolutely a.e. in E if $\sum_{k=1}^{\infty} \int_{E} |f_k| < \infty$.

 $^{^{2}}$ Consider the change of variables in your calculus course.